欢迎访问《汽车安全与节能学报》,

汽车安全与节能学报 ›› 2025, Vol. 16 ›› Issue (4): 568-576.DOI: 10.3969/j.issn.1674-8484.2025.04.007

• 汽车节能与环保 • 上一篇    下一篇

储能电站锂离子电池系统风液双循环优化设计

刘金祎1(), 王炎1,2,*(), 庞英杰1, 于瑞广1, 牟瑞涛1, 卢兰光2, 李亚伦2, 王贺武2, 张立磊3, 李明明3   

  1. 1 青岛理工大学 机械与汽车工程学院青岛 266520, 中国
    2 清华大学智能绿色车辆与交通全国重点实验室(原汽车安全与节能国家重点实验室)北京 100080, 中国
    3 烟台创为新能源科技股份有限公司烟台 264006, 中国
  • 收稿日期:2024-12-23 修回日期:2025-02-24 出版日期:2025-08-30 发布日期:2025-08-27
  • 通讯作者: *王炎,副教授。E-mail:wangyan2387@163.com
  • 作者简介:刘金祎(2000—),男(汉),山东,硕士研究生。E-mail:ljy09163116@163.com
  • 基金资助:
    智能绿色车辆与交通全国重点实验室开放基金(KFY2402);国家重点研发储能专项(2022YFB2404800)

Optimized design of wind-liquid double cycle for lithium-ion battery system in energy storage power station

LIU Jinyi1(), WANG Yan1,2,*(), PANG Yingjie1, YU Ruiguang1, MOU Ruitao1, LU Languang2, LI Yalun2, WANG Hewu2, ZHANG Lilei3, LI Mingming3   

  1. 1 College of Mechanical and Automotive Engineering, Qingdao University of Science and Technology, Qingdao 266520, China
    2 National Key Laboratory of Intelligent Green Vehicles and Transportation (formerly State Key Laboratory of Automotive Safety and Energy Conservation), Tsinghua University, Beijing 100080, China
    3 Yantai Creating New Energy Technology Co., LTD., Yantai 264006, China
  • Received:2024-12-23 Revised:2025-02-24 Online:2025-08-30 Published:2025-08-27

摘要:

为提升储能电站锂离子电池系统温度一致性,从温度均匀性控制以及温差动态调控的角度出发,提出了锂离子电池风液双循环热管理系统。在中低温环境下依靠风冷调节电池温度,在高温环境下依靠风液复合冷却调节电池温度。围绕风量、风温、冷却液温度、流量等4个因素,开展仿真实验;通过一维、三维联合仿真,优化换热结构,分析温升、温均性能参数影响显著性。结果表明:在2倍额定大功率放电工况下,与传统底面冷板结构相比,本文的风液双循环系统的放电末期温差降低了18%。与100 s送风周期相比,300 s送风周期可使系统温差减少31%,即1.18 ℃。参数敏感因素从大到小排序为:风温、风量、冷却液温度、流量。从而,本设计改善了温差动态调控,有利于延长储能电池系统的服役寿命。

关键词: 储能电站, 锂离子电池系统, 电池热管理, 一维、三维联合仿真, 温度均匀性

Abstract:

A thermal management system with dual air-liquid circulation was proposed based on the temperature homogeneity control and the dynamic temperature difference regulation to enhance the temperature uniformity in lithium-ion battery systems for energy storage power stations. The system utilized air cooling under low-to-medium temperature conditions to combined air-liquid cooling in high-temperature environments. Simulation experiments investigated 4 control parameters including the air volume, the air temperature, the coolant temperature, and the coolant flow rate. The heat exchange structure was optimized through 1D-3D co-simulations to analyzing the significance of temperature rise and the uniformity of performance parameters. The results show that under twice the rated high-power discharge, the proposed system reduces the end-of-discharge temperature difference by 18% compared to the conventional bottom cold plate structures. A 300 s air supply cycle achieves a 31% reduction in the temperature difference (of 1.18 °C) versus a 100 s cycle. Parameter sensitivity decreases in the order as the air temperature, the air volume, the coolant temperature, and the coolant flow rate. Therefore, the dual air-liquid circulation design enhances dynamic temperature difference control with extending the service life of energy storage battery systems.

Key words: energy storage power stations, lithium-ion battery systems, battery thermal management, one-dimensional/three-dimensional joint simulation, temperature uniformity

中图分类号: