汽车安全与节能学报 ›› 2024, Vol. 15 ›› Issue (2): 208-217.DOI: 10.3969/j.issn.1674-8484.2024.02.009
李龙辉1(
), 张甫仁1,*(
), 黄郅凯1, 李雪1, 赵浩东1, 史亚洲1, 孙世政1, 赵海波2
收稿日期:2023-06-06
修回日期:2023-12-29
出版日期:2024-04-30
发布日期:2024-04-27
通讯作者:
* 张甫仁,教授。E-mail: zfr@cqjtu.edu.cn。
作者简介:李龙辉(2000—),男(汉),湖北,硕士研究生。E-mail:1469818605@qq.com。
基金资助:
LI Longhui1(
), ZHANG Furen1,*(
), HUANG Zhikai1, LI Xue1, ZHAO Haodong1, SHI Yazhou1, SUN Shizheng1, ZHAO Haibo2
Received:2023-06-06
Revised:2023-12-29
Online:2024-04-30
Published:2024-04-27
摘要:
为解决传统通道型液冷板功耗高、散热效率低等问题,提出了用于电动车的一种异形化的水轮形扰流翅片组耦合均温板电池热管理系统。水轮组的组合方式、布置位置和数量等因素确定基础模型后,使用多目标优化方法,分析了翅片长度、翅片倾角、中心距离出口边距离和两出口间距离。为了进一步提升液冷板均温性,在液冷板外侧添加均温板,以温度为目标函数对其进行拓扑优化。结果表明:与初始模型相比平均温度和标准差分别降低了1.83 ℃和0.45,综合评价指标—热性能因子(TPF)提升77.8%。翅片长度、倾角、出口位置及其附件扰流对液冷板各项性能有着显著影响。在流体通道所占体积分数为0.8时,液冷板的平均温度进一步下降2.6 ℃,温度标准差下降0.206,TPF相较添加前继续提升18.9%。
中图分类号:
李龙辉, 张甫仁, 黄郅凯, 李雪, 赵浩东, 史亚洲, 孙世政, 赵海波. 水轮型翅片组耦合均温板的多目标及拓扑优化[J]. 汽车安全与节能学报, 2024, 15(2): 208-217.
LI Longhui, ZHANG Furen, HUANG Zhikai, LI Xue, ZHAO Haodong, SHI Yazhou, SUN Shizheng, ZHAO Haibo. Multi-objective and topological optimization of hydro-wheel fins coupled vapor chambers[J]. Journal of Automotive Safety and Energy, 2024, 15(2): 208-217.
| φ / % | θave / ℃ | SD | TPF |
|---|---|---|---|
| 100 | 33.908 | 1.307 | 1.914 |
| 80 | 33.991 | 1.249 | 1.968 |
| 60 | 33.922 | 1.368 | 1.840 |
| 40 | 33.976 | 1.308 | 1.720 |
| 20 | 33.890 | 1.427 | 1.782 |
| φ / % | θave / ℃ | SD | TPF |
|---|---|---|---|
| 100 | 33.908 | 1.307 | 1.914 |
| 80 | 33.991 | 1.249 | 1.968 |
| 60 | 33.922 | 1.368 | 1.840 |
| 40 | 33.976 | 1.308 | 1.720 |
| 20 | 33.890 | 1.427 | 1.782 |
| [1] | XIONG Rui, PAN Yue, SHEN Weixiang, et al. Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives[J]. Renew Sustain Energy Rev, 2022, 131: Paper No 110048. |
| [2] |
YI Feng, E Jiaqiang, ZHANG Bin, et al. Effects analysis on heat dissipation characteristics of lithium-ion battery thermal management system under the synergism of phase change material and liquid cooling method[J]. Renewable Energy, 2022, 181: 472-489.
doi: 10.1016/j.renene.2021.09.073 URL |
| [3] | Kannangara M, Bensebaa F, Vasudev M. An adaptable life cycle greenhouse gas emissions assessment framework for electric, hybrid, fuel cell and conventional vehicles: Effect of electricity mix, mileage, battery capacity and battery chemistry in the context of Canada[J]. J Cleaner Produ, 2021, 317: Paper No 128394. |
| [4] | Wassiliadis N, Steinsträter M, Schreiber M, et al. Quantifying the state of the art of electric powertrains in battery electric vehicles: Range, efficiency, and lifetime from component to system level of the Volkswagen ID.3[J]. e Transp, 2022, 12: Paper No 100167. |
| [5] | Oztop M, Şahinaslan A, Control of temperature distribution for Li-ion battery modules via longitudinal fins[J]. J Energ Stor, 2022, 52: Paper No 104760. |
| [6] |
Chung Y, Kim M S Thermal analysis and pack level design of battery thermal management system with liquid cooling for electric vehicles[J]. Energy Conve Manag, 2019, 196: 105-116.
doi: 10.1016/j.enconman.2019.05.083 URL |
| [7] | MO Xiaobao, ZHI Hui, XIAO Yizhi, et al. Topology optimization of cooling plates for battery thermal management[J]. Int’l J Heat Mass Transf, 2021, 178: Paper No 121612. |
| [8] | CHEN Sheng, Miguel A F, Aydin M. Constructal design in the cooling and hydraulic performance of tube heat sinks[J]. Int’l Commu Heat Mass Transf, 2021, 129: Paper No 105668. |
| [9] |
Salem M R, Ali R K, Elshazly K M. Experimental investigation of the performance of a hybrid photovoltaic/thermal solar system using aluminium cooling plate with straight and helical channels[J]. Solar Energy, 2017, 157: 147-156.
doi: 10.1016/j.solener.2017.08.019 URL |
| [10] | GAO Zhengyuan, DENG Fang, YAN Dong, et al. Thermal performance of thermal management system coupling composite phase change material to water cooling with double s-shaped micro-channels for prismatic lithium-ion battery[J]. J Energ Stor, 2022, 45: Paper No 103490. |
| [11] | WU Shaojie, ZHANG Kai, SONG Ge, et al. Experimental study on the performance of a tree-shaped mini-channel liquid cooling heat sink[J]. Case Stud Therm Engineering, 2022, 30: Paper No 101780. |
| [12] | ZHAO Ding, LEI Zhiguo, AN Chan. Research on battery thermal management system based on liquid cooling plate with honeycomb-like flow channel[J]. Appl Therm Engineering, 2023, 218: Paper No 119324. |
| [13] | CHEN Sheng, Miguel A F, Aydin M, Constructal design in the cooling and hydraulic performance of tube heat sinks[J]. Int’l Commu Heat Mass Transf, 2021, 129: Paper No 105668. |
| [14] | LIU Fen, WANG Jianfeng, LIU Yiqun, et al. Natural convection characteristics of honeycomb fin with different hole cells for battery phase-change material cooling systems[J]. J Energ Stor, 2022, 51: Paper No 104578. |
| [15] | ZHAO Rongchao WEN Dayang, LAI Zhaodan, et al. Performance analysis and optimization of a novel cooling plate with non-uniform pin-fins for lithium battery thermal management[J]. Appl Ther Engineering, 2021, 51: Paper No 104578. |
| [16] | Hosseinirad E, Khoshvaght-Aliabadi M. Proximity effects of straight and wavy fins and their interruptions on performance of heat sinks utilized in battery thermal management[J]. Int’l J Heat Mass Transf, 2021, 173: Paper No 121259 |
| [17] | Choi H, Han U, Lee H. Effects of diverging channel design cooling plate with oblique fins for battery thermal management[J]. Int’l J Heat Mass Transf, 2023, 200: Paper No 123485 |
| [18] | XU Xiaoming, TONG Guangyao, LI Renzheng. Numerical study and optimizing on cold plate splitter for lithium battery thermal management system[J]. Appl Therm Engineering, 2020, 167: Paper No 114787 |
| [19] | Khetib Y, Sedraoui K, Gari A. Numerical study of the effects of pin geometry and configuration in micro-pin-fin heat sinks for turbulent flows[J]. Case Stud Therm Engineering, 2021, 27: Paper No 101243. |
| [20] | ZHANG Furen, LIANG Beibei, HE Yanxiao, et al. Study on flow and heat transfer characteristics of phase change synergistic combination finned liquid cooling plate[J]. Int’l Commu Heat Mass Transf, 2022, 138: Paper No 106377 |
| [21] | FAN Yiwei, WANG Zhaohui, FU Ting. Multi-objective optimization design of lithium-ion battery liquid cooling plate with double-layered dendritic channels[J]. Appl Therm Engineering, 2021, 199: Paper No 117541. |
| [22] | Bulut E, Albak E I, Sevilgen G, et al. A new approach for battery thermal management system design based on grey relational analysis and Latin hypercube sampling[J]. Case Stud Therm Engineering, 2021, 28: Paper No 101452. |
| [23] |
Yoon G H, Topological design of heat dissipating structure with forced convective heat transfer[J]. J Mech Sci Tech, 2010, 24(6): 1225-1233.
doi: 10.1007/s12206-010-0328-1 URL |
| [24] |
孟凡振, 丁晓红, 李昊, 等. 层次脉状结构液冷均温板优化设计研究[J]. 机械工程学报, 2022, 58(22): 426-437.
doi: 10.3901/JME.2022.22.426 |
| MENG Fanzhen, DING Xiaohong, LI Hai, et al. Study on optimal design of liquid cooling uniform temperature plate embedded with hierarchical vein structure[J]. Chin J Mech Enineering, 2022, 58(22): 426-437. (in Chinese) | |
| [25] | YAN Yunfei, XUE Zongguo, XU Fulei, et al. Numerical investigation on thermal-hydraulic characteristics of the micro heat sink with gradient distribution pin fin arrays and narrow slots[J]. Appl Therm Engineering, 2022, 202: Paper No 117836. |
| [26] |
Bernardi D, Pawlikowski E, Newman J. A general energy balance for battery systems[J]. Journal of The Electrochemical Society, 1985, 132:5-12.
doi: 10.1149/1.2113792 |
| [27] | ZHANG Furen, YI Mengfei, WANG Pengwei, et al. Optimization design for improving thermal performance of T-type air-cooled lithium-ion battery pack[J]. Energy Storage, 2021, 44: Paper No 103464. |
| [28] | ZHANG Furen, LU Xinglong, ZHANG Lin, et al. Bionic liquid cooling plate thermal management system based on flow resistance-thermal resistance model[J]. Int’l Commu Heat Mass Transf, 2023, 190: Paper No 108336. |
| [29] | ZHANG Furen, LIANG Beibei, HE Yanxiao, et al. Study on flow and heat transfer characteristics of phase change synergistic combination finned liquid cooling plate[J]. Int’l Commu Heat Mass Transf, 2022, 138: Paper No 106377 |
| [1] | 关权, 涂正凯. 锂电池与燃料电池混合观光车动力系统的优化设计[J]. 汽车安全与节能学报, 2024, 15(2): 199-207. |
| [2] | 屈贤, 张金龙, 渠立红. 盘鼓混合式磁流变踏板力调控装置结构设计与优化[J]. 汽车安全与节能学报, 2023, 14(6): 698-706. |
| [3] | 赵浩东, 张甫仁, 路兴隆, 黄郅凯, 李雪, 孙世政. 仿生四叶草型翅片液冷板与传热特性[J]. 汽车安全与节能学报, 2023, 14(5): 637-647. |
| [4] | 李雪, 张甫仁, 路兴隆, 黄郅凯, 赵浩东, 史亚洲. 锂离子动力电池蛇形通道液体冷却板的性能优化[J]. 汽车安全与节能学报, 2023, 14(3): 385-392. |
| [5] | 雍安姣, 项阳, 付永宏, 汪爽, 郭廷, 王勇. 搭配低温散热器的PHEV电池冷却系统的节能效果[J]. 汽车安全与节能学报, 2022, 13(4): 796-803. |
| [6] | 亓昌, 付利荣, 孙勇, 魏文涛, 杨姝. 热塑性纤维金属层板的抗低速冲击性能[J]. 汽车安全与节能学报, 2022, 13(3): 421-428. |
| [7] | 罗耿, 赵剑南, 陈亮, 柴成鹏, 王童, 陈轶嵩. 新型波纹结构吸能盒耐撞性研究[J]. 汽车安全与节能学报, 2022, 13(3): 453-462. |
| [8] | 单春贤, 夏灯富, 刘朝阳, 唐爱坤. 基于热电耦合液体冷却的动力电池热管理系统的实验研究[J]. 汽车安全与节能学报, 2022, 13(3): 535-540. |
| [9] | 张甫仁, 鲁福, 吴博, 肖康. 内部结构组合形式优化对冷板冷却性能的影响[J]. 汽车安全与节能学报, 2022, 13(2): 368-377. |
| [10] | 陈友鹏, 张国庆, 秦启超, 覃卓庚, 邓坚, 李新喜. 电动汽车用柔性复合相变材料的电池热管理系统[J]. 汽车安全与节能学报, 2022, 13(1): 168-175. |
| [11] | 蔡森林, 魏名山, 宋盼盼, 魏洪革. 基于直流道液冷板的动力电池冷却性能仿真[J]. 汽车安全与节能学报, 2021, 12(3): 380-385. |
| [12] | 亓昌,韩元吉,杨 姝,吕振华. 考虑气动阻力和横风稳定的汽车车身多目标优化设计[J]. JASE, 2020, 11(1): 53-60. |
| [13] | 马云海,陈创发,端木令坚,危银涛. 碳纤维 / 碳纳米管复合胎面胶的拉伸及耐磨性能[J]. JASE, 2019, 10(4): 443-450. |
| [14] | 陈德海,邹争明,王 超,华 铭. 基于三段优化法的车载锂电池的快速充电方法[J]. JASE, 2019, 10(3): 383-390. |
| [15] | 方 健,史国宏. 电动汽车全新架构前期开发中的多学科集成优化设计[J]. JASE, 2019, 10(1): 112-118. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||