汽车安全与节能学报 ›› 2024, Vol. 15 ›› Issue (6): 905-914.DOI: 10.3969/j.issn.1674-8484.2024.06.012
邱帅帅(
), 张甫仁*(
), 孙世政, 陶远兵, 陶佳辉, 谭海坤
收稿日期:2023-12-27
修回日期:2024-02-26
出版日期:2024-12-31
发布日期:2025-01-01
通讯作者:
*张甫仁,教授。E-mail:zh_feixue@163.com。
作者简介:邱帅帅(1995—),男(汉),河南,硕士研究生。E-mail:17823717571@163.com。
基金资助:
QIU Shuaishuai(
), ZHANG Furen*(
), SUN Shizheng, TAO Yuanbing, TAO Jiahui, TAN Haikun
Received:2023-12-27
Revised:2024-02-26
Online:2024-12-31
Published:2025-01-01
摘要:
为了提高冷却板的冷却性能和解决压力损失大的问题,采用一种复合 X 型通道液冷板结构来研究锂离子电池的散热性能。以通道倾斜角、通道位置及入口通道上下夹角为设计变量,通过目标函数(平均温度、温度标准差、压降)得到液冷板的综合冷却性能,进而确定液冷板的最优结构参数;通过单体电池实验,得到电池在不同放电倍率下的产热量及温升特性;采用 Latin 超立方体(LHS)在设计空间内抽取 70 组样本点,基于近似模型(RSA)建立设计变量与目标函数之间的关系,采用非支配排序遗传算法Ⅱ(NSGA-Ⅱ)对RSA进行寻优,利用计算流体力学(CFD)验证寻优结果的合理性。结果表明:液冷板的泵送功率得到有效改善,与初始模型相比,压降降低了37.9%, 综合冷却性能提升了 55.3%。
中图分类号:
邱帅帅, 张甫仁, 孙世政, 陶远兵, 陶佳辉, 谭海坤. 基于多目标优化的液冷板散热性能分析[J]. 汽车安全与节能学报, 2024, 15(6): 905-914.
QIU Shuaishuai, ZHANG Furen, SUN Shizheng, TAO Yuanbing, TAO Jiahui, TAN Haikun. Analysis of heat dissipation performance of liquid cooling plate based on multi-objective optimization[J]. Journal of Automotive Safety and Energy, 2024, 15(6): 905-914.
| 样本 | 设计变量 | 优化目标 | |||||||
|---|---|---|---|---|---|---|---|---|---|
| X1 | X2 | X3 | X4 | X5 | Y1 | Y2 | Y3 | ||
| 1 | 16.28 | 40.48 | 69.78 | 21.87 | 32.26 | 60.348 | 40.010 | 2.100 | |
| 2 | 14.46 | 23.13 | 84.78 | 21.57 | 29.48 | 79.616 | 39.196 | 1.446 | |
| 3 | 15.37 | 28.3 | 78.26 | 23.29 | 47.57 | 56.452 | 39.705 | 1.904 | |
| … | … | … | … | … | … | … | … | … | |
| 68 | 7.91 | 35.30 | 75.00 | 21.36 | 28.09 | 74.956 | 39.662 | 1.780 | |
| 69 | 7.61 | 39.87 | 75.65 | 22.68 | 43.04 | 47.440 | 40.231 | 2.213 | |
| 70 | 8.22 | 37.43 | 51.52 | 20.96 | 45.83 | 42.664 | 40.115 | 2.371 | |
| 样本 | 设计变量 | 优化目标 | |||||||
|---|---|---|---|---|---|---|---|---|---|
| X1 | X2 | X3 | X4 | X5 | Y1 | Y2 | Y3 | ||
| 1 | 16.28 | 40.48 | 69.78 | 21.87 | 32.26 | 60.348 | 40.010 | 2.100 | |
| 2 | 14.46 | 23.13 | 84.78 | 21.57 | 29.48 | 79.616 | 39.196 | 1.446 | |
| 3 | 15.37 | 28.3 | 78.26 | 23.29 | 47.57 | 56.452 | 39.705 | 1.904 | |
| … | … | … | … | … | … | … | … | … | |
| 68 | 7.91 | 35.30 | 75.00 | 21.36 | 28.09 | 74.956 | 39.662 | 1.780 | |
| 69 | 7.61 | 39.87 | 75.65 | 22.68 | 43.04 | 47.440 | 40.231 | 2.213 | |
| 70 | 8.22 | 37.43 | 51.52 | 20.96 | 45.83 | 42.664 | 40.115 | 2.371 | |
| [1] | QIN Peng, SUN Jinhua, YANG Xulia, et al. Battery thermal management system based on the forced-air convection: A review[J]. Transportation, 2021, 7: 1-20. |
| [2] | Gandoman F H, Ahmadi A, Peter Van den Bossche et al. Status and future perspectives of reliability assessment for electric vehicle[J]. Reliab Engi Syst Safe, 2019, 183: 1-16. |
| [3] | LI Lin, Dababneh F, ZHAO Jing. Cost-effective supply chain for electric vehicle battery remanufacturing[J]. Appl Energ, 2018, 226(C): 277-286. |
| [4] | YU Zhipeng, ZHANG Jiakai, PAN Weiguo. A review of battery thermal management systems about heat pipe and phase change materials[J]. J Energ Stor, 2023, 62: 1-19. |
| [5] | YI Feng, JIA Qiang, ZHANG Bin, et al. Effects analysis on heat dissipation characteristics of lithium-ion battery thermal management system under the synergism of phase change material and liquid cooling method[J]. Renewab Energ, 2022, 181: 472-489. |
| [6] | LU Mengyao, ZHANG Xuelai, JI Jun, et al. Research progress on power battery cooling technology for electric vehicles[J]. J Energ Stor, 2020, 27: 101155. |
| [7] | Arora S, Kapoor A, SHEN Weixiang. A novel thermal management system for improving discharge/charge performance of Li-ion battery packs under abuse[J]. J Power Sources, 2018, 378: 759-775. |
| [8] | LIN Jiayuan, LIU Xinhua, LI Shen, et al. A review on recent progress, challenges and perspective of battery thermal management system[J]. Int’l J Heat Mass Trans, 2021(167): 120834. |
| [9] | ZHAO Guang, WANG Xiaolin, Negnevitsky M, et al. A review of air-cooling battery thermal management systems for electric and hybrid electric vehicles[J]. J Power Sources, 2021, 501: 230001. |
| [10] | Koorata P K, Chandrasekaran N. Numerical investigation of cooling performance of a novel air-cooled thermal management system for cylindrical Li-ion battery module[J]. Appl Therm Engi, 2021, 193: 116961. |
| [11] | Tete P R, Gupta M M, Joshi S S. Numerical investigation on thermal characteristics of a liquid-cooled lithium-ion battery pack with cylindrical cell casings and a square duct[J]. J Energ Stor, 2022, 48: 104041. |
| [12] | El Idi M M, Karkri M, Tankari M A. A passive thermal management system of Li-ion batteries using PCM composites: Experimental and numerical investigations[J]. Int’l J Heat Mass Trans, 2021(169): 120894. |
| [13] | Jilte R D, Kumar R, Ma Lin. Thermal performance of a novel confined flow Li-ion battery module[J]. Appl Therm Engi, 2019, 146: 1-11. |
| [14] | Dallaire J, Gosselin L. Various ways to take into account density change in solid-liquid phase change models: Formulation and consequences[J]. Int’l J Heat Mass Trans, 2016, 103: 672-83. |
| [15] | FAN Yiwei, WANG Zhaohui, XIONG Xiao, et al. Novel concept design of low energy hybrid battery thermal management system using PCM and multistage Tesla valve liquid cooling[J]. Appl Therm Engi, 2023, 220: 119680. |
| [16] | ZHANG Furen, GOU Huan, XIE Chenchuang, et al. A new stepped-channel liquid cooling plate thermal management system combined with composite phase change materials[J], Appl Therm Engi, 2022, 211: 1-20. |
| [17] | FENG Xiaohui, LOU Yilong, ZHANG Kang, et al. Optimization of liquid-cooled lithium-ion battery thermal management system under extreme temperature[J]. J Energ Stor, 2024, 99: 113214. |
| [18] | WU Changkun, NI Jimin, SHI Xiuyong, et al. A new design of cooling plate for liquid-cooled battery thermal management system with variable heat transfer path[J]. Appl Therm Engi, 2024, 239: 122107. |
| [19] | QI Wenjie, LAN Peng, YANG Jiaxing, et al. Multi-U-Style micro-channel in liquid cooling plate for thermal management of power batteries[J]. Appl Thermal Engi, 2024, 256: 123984. |
| [20] | FAN Yiwei, WANG Zhaohui, FU Ting, et al. Numerical investigation on lithium-ion battery thermal management utilizing a novel tree-like channel liquid cooling plate exchanger[J]. Int’l J Heat Mass Trans, 2022, 183: 5-22. |
| [21] | MA Yinjie, LIU Cheng, JIA Qiang, et al. Research on modeling and parameter sensitivity of flow and heat transfer process in typical rectangular microchannels: From a data-driven perspective[J]. Int’l J Therm Sci, 2022, 172: 3-12. |
| [22] | ZHANG Furen, LIANG Beibei, HE Yanxiao, et al. Study on flow and heat transfer characteristics of phase change synergistic combination finned liquid cooling plate[J]. Int’l Commun Heat Mass Trans, 2022, 138: 1-15. |
| [23] | ZHANG Furen, YI Mengfei, WANG Pengwei, et al. Optimization design for improving thermal performance of T-type air-cooled lithium-ion battery pack[J]. J Energ Stor, 2021, 44: 1-14. |
| [1] | 杜世龙, 郝 瀚. 退役动力电池回收的经济性分析[J]. 汽车安全与节能学报, 2025, 16(1): 86-96. |
| [2] | 陶佳辉, 张甫仁, 孙世政, 邱帅帅, 王 烽, 陶远兵, 谭海坤, 李龙辉. 仿生雪花液冷通道散热器的性能优化[J]. 汽车安全与节能学报, 2025, 16(1): 107-116. |
| [3] | 周怡彬, 唐爱坤, 王贞涛, 蔡涛. 杂化氮化硼复合相变微胶囊悬浮液的设计及在PEM燃料电池冷却中的应用[J]. 汽车安全与节能学报, 2024, 15(6): 866-874. |
| [4] | 张金秀, 闫彩红, 任桂周. 基于Gauss过程分数位回归模型的锂电池SOH估计[J]. 汽车安全与节能学报, 2024, 15(6): 886-894. |
| [5] | 姚荣涵, 徐文韬, 林子敬, 王立冰. 公交-合乘车道优化设计的多目标双层规划模型[J]. 汽车安全与节能学报, 2024, 15(5): 711-722. |
| [6] | 陈绮桐, 赵东, 刘丛志, 李亮. 考虑经验驾驶行为的入弯实时类人速度规划方法[J]. 汽车安全与节能学报, 2024, 15(3): 309-320. |
| [7] | 郝祯淇, 王学远, 李嘉伟, 戴海峰, 魏学哲. 基于特征阻抗及滑动t方法的变电流快充析锂检测方法[J]. 汽车安全与节能学报, 2024, 15(3): 344-350. |
| [8] | 薛耀, 刘洁, 李伟峰, 高镇海, 王贺武. 基于钴酸锂/镍酸锂体系的18650锂离子电池针刺滥用热失控颗粒喷发物特性[J]. 汽车安全与节能学报, 2024, 15(2): 193-198. |
| [9] | 李龙辉, 张甫仁, 黄郅凯, 李雪, 赵浩东, 史亚洲, 孙世政, 赵海波. 水轮型翅片组耦合均温板的多目标及拓扑优化[J]. 汽车安全与节能学报, 2024, 15(2): 208-217. |
| [10] | 朱亚宁, 张振东, 盛雷, 陈龙, 朱泽华, 付林祥, 毕青. 21700锂离子电池在不同SOC下的热失控实验研究[J]. 汽车安全与节能学报, 2024, 15(2): 218-225. |
| [11] | 李涵, 王炎, 张西龙, 王贺武, 李亚伦, 卢兰光. 热辐射触发锂离子电池热失效行为及其射流热特性[J]. 汽车安全与节能学报, 2024, 15(1): 83-91. |
| [12] | 李雪, 张甫仁, 路兴隆, 黄郅凯, 赵浩东, 史亚洲. 锂离子动力电池蛇形通道液体冷却板的性能优化[J]. 汽车安全与节能学报, 2023, 14(3): 385-392. |
| [13] | 罗耿, 赵剑南, 陈亮, 柴成鹏, 王童, 陈轶嵩. 新型波纹结构吸能盒耐撞性研究[J]. 汽车安全与节能学报, 2022, 13(3): 453-462. |
| [14] | 魏孟, 王桥, 叶敏, 廉高棨, 徐信芯. 基于dropout-MC递归神经网络的锂电池剩余寿命预测[J]. 汽车安全与节能学报, 2022, 13(3): 541-549. |
| [15] | 王桥, 魏孟, 叶敏, 廉高棨, 麻玉川. 基于GWO-LSTM与LSSVM的锂离子电池荷电状态与容量联合估计[J]. 汽车安全与节能学报, 2022, 13(3): 571-579. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||