汽车安全与节能学报 ›› 2023, Vol. 14 ›› Issue (5): 637-647.DOI: 10.3969/j.issn.1674-8484.2023.05.013
• 汽车节能与环保 • 上一篇
赵浩东(
), 张甫仁(
), 路兴隆, 黄郅凯, 李雪, 孙世政
收稿日期:2023-03-29
修回日期:2023-07-14
出版日期:2023-10-31
发布日期:2023-10-31
通讯作者:
*张甫仁,教授。E-mail:zfr@cqjtu.edu.cn。
作者简介:赵浩东(1997—),男(苗族),重庆,硕士研究生。E-mail:1557357127@qq.com。
基金资助:
ZHAO Haodong(
), ZHANG Furen(
), LU Xinglong, HUANG Zhikai, LI Xue, SUN Shizheng
Received:2023-03-29
Revised:2023-07-14
Online:2023-10-31
Published:2023-10-31
摘要:
温度和压降作为电池热管理的2个重要影响因素,对改善电池散热性能具有十分重要的意义。为进一步改善电池的散热性能,降低压降的同时使温度分布更加均匀,该文提出了一种仿生四叶草型翅片模型,并基于计算流体动力学(CFD)对基础模型进行了优化。分析冷板的进出口设计结构及基础模型中圆形翅片的尺寸的作用,并将基础模型四叶草化,探讨了优化后模型四叶草弧度以及翅片列数带来的影响;最后分析了3种模型的Nusselt数、压降以及综合评价指标(HTPF)随Reynolds数的变化趋势。结果表明:当四叶草型翅片的弧度为37.5°,翅片的行列数为5行11列时,与圆形翅片直径为4 mm的模型相比,综合性能达到最高,提高了1.54%;采用正交实验得出4片四叶草翅片的角度以及四叶草内圆半径的最优解,该优化模型综合性能提高了4.56%。随着雷诺数的增加,液冷板在经过正交实验优化后,Nusselt、压降,以及HTPF均达到最优。
中图分类号:
赵浩东, 张甫仁, 路兴隆, 黄郅凯, 李雪, 孙世政. 仿生四叶草型翅片液冷板与传热特性[J]. 汽车安全与节能学报, 2023, 14(5): 637-647.
ZHAO Haodong, ZHANG Furen, LU Xinglong, HUANG Zhikai, LI Xue, SUN Shizheng. Bionic four-leaf clover fin liquid cooling plate and heat transfer characteristics[J]. Journal of Automotive Safety and Energy, 2023, 14(5): 637-647.
| 水平/因素 | r1 | α1 / (°) | α2 / (°) | α3 / (°) | α4 / (°) |
|---|---|---|---|---|---|
| 1 | 0.3 | 32.5 | 32.5 | 32.5 | 32.5 |
| 2 | 0.5 | 37.5 | 37.5 | 37.5 | 37.5 |
| 3 | 0.7 | 42.5 | 42.5 | 42.5 | 42.5 |
| 4 | 0.9 | 47.5 | 47.5 | 47.5 | 47.5 |
| 水平/因素 | r1 | α1 / (°) | α2 / (°) | α3 / (°) | α4 / (°) |
|---|---|---|---|---|---|
| 1 | 0.3 | 32.5 | 32.5 | 32.5 | 32.5 |
| 2 | 0.5 | 37.5 | 37.5 | 37.5 | 37.5 |
| 3 | 0.7 | 42.5 | 42.5 | 42.5 | 42.5 |
| 4 | 0.9 | 47.5 | 47.5 | 47.5 | 47.5 |
| 序号 | r1 | α1 | α2 | α3 | α4 | HTPF |
|---|---|---|---|---|---|---|
| 1 | 0.3 | 32.5 | 32.5 | 32.5 | 32.5 | 0.999 98 |
| 2 | 0.3 | 37.5 | 37.5 | 37.5 | 37.5 | 1.000 00 |
| 3 | 0.3 | 42.5 | 42.5 | 42.5 | 42.5 | 0.996 85 |
| 4 | 0.3 | 47.5 | 47.5 | 47.5 | 47.5 | 0.999 07 |
| 5 | 0.5 | 32.5 | 37.5 | 42.5 | 47.5 | 1.007 95 |
| 6 | 0.5 | 37.5 | 32.5 | 47.5 | 42.5 | 1.008 45 |
| 7 | 0.5 | 42.5 | 47.5 | 32.5 | 37.5 | 1.009 8 |
| 8 | 0.5 | 47.5 | 42.5 | 37.5 | 32.5 | 1.006 73 |
| 9 | 0.7 | 32.5 | 42.5 | 47.5 | 37.5 | 1.020 98 |
| 10 | 0.7 | 37.5 | 47.5 | 42.5 | 32.5 | 1.017 43 |
| 11 | 0.7 | 42.5 | 32.5 | 37.5 | 47.5 | 1.019 89 |
| 12 | 0.7 | 47.5 | 37.5 | 32.5 | 42.5 | 1.018 75 |
| 13 | 0.9 | 32.5 | 47.5 | 37.5 | 42.5 | 1.020 9 |
| 14 | 0.9 | 37.5 | 42.5 | 32.5 | 47.5 | 1.023 05 |
| 15 | 0.9 | 42.5 | 37.5 | 47.5 | 32.5 | 1.027 2 |
| 16 | 0.9 | 47.5 | 32.5 | 42.5 | 37.5 | 1.023 93 |
| K1 | 3.995 9 | 4.049 81 | 4.052 25 | 4.051 58 | 4.051 34 | - |
| K2 | 4.032 93 | 4.048 93 | 4.053 9 | 4.047 52 | 4.054 71 | - |
| K3 | 4.077 05 | 4.053 74 | 4.047 61 | 4.046 16 | 4.044 95 | - |
| K4 | 4.095 08 | 4.048 48 | 4.047 2 | 4.055 7 | 4.049 96 | - |
| R | 0.099 18 | 0.005 26 | 0.006 29 | 0.009 54 | 0.009 76 | - |
| 序号 | r1 | α1 | α2 | α3 | α4 | HTPF |
|---|---|---|---|---|---|---|
| 1 | 0.3 | 32.5 | 32.5 | 32.5 | 32.5 | 0.999 98 |
| 2 | 0.3 | 37.5 | 37.5 | 37.5 | 37.5 | 1.000 00 |
| 3 | 0.3 | 42.5 | 42.5 | 42.5 | 42.5 | 0.996 85 |
| 4 | 0.3 | 47.5 | 47.5 | 47.5 | 47.5 | 0.999 07 |
| 5 | 0.5 | 32.5 | 37.5 | 42.5 | 47.5 | 1.007 95 |
| 6 | 0.5 | 37.5 | 32.5 | 47.5 | 42.5 | 1.008 45 |
| 7 | 0.5 | 42.5 | 47.5 | 32.5 | 37.5 | 1.009 8 |
| 8 | 0.5 | 47.5 | 42.5 | 37.5 | 32.5 | 1.006 73 |
| 9 | 0.7 | 32.5 | 42.5 | 47.5 | 37.5 | 1.020 98 |
| 10 | 0.7 | 37.5 | 47.5 | 42.5 | 32.5 | 1.017 43 |
| 11 | 0.7 | 42.5 | 32.5 | 37.5 | 47.5 | 1.019 89 |
| 12 | 0.7 | 47.5 | 37.5 | 32.5 | 42.5 | 1.018 75 |
| 13 | 0.9 | 32.5 | 47.5 | 37.5 | 42.5 | 1.020 9 |
| 14 | 0.9 | 37.5 | 42.5 | 32.5 | 47.5 | 1.023 05 |
| 15 | 0.9 | 42.5 | 37.5 | 47.5 | 32.5 | 1.027 2 |
| 16 | 0.9 | 47.5 | 32.5 | 42.5 | 37.5 | 1.023 93 |
| K1 | 3.995 9 | 4.049 81 | 4.052 25 | 4.051 58 | 4.051 34 | - |
| K2 | 4.032 93 | 4.048 93 | 4.053 9 | 4.047 52 | 4.054 71 | - |
| K3 | 4.077 05 | 4.053 74 | 4.047 61 | 4.046 16 | 4.044 95 | - |
| K4 | 4.095 08 | 4.048 48 | 4.047 2 | 4.055 7 | 4.049 96 | - |
| R | 0.099 18 | 0.005 26 | 0.006 29 | 0.009 54 | 0.009 76 | - |
| [1] |
XIA Guodong, CAO Lei, BI Guanglong. A review on battery thermal management in electric vehicle application[J]. J Power Sources. 2017, 367: 90-105.
doi: 10.1016/j.jpowsour.2017.09.046 URL |
| [2] | Richard M, John D N. On the potential for one-way electric vehicle car-sharing in future mobility systems[J]. Transport Res Part A: Poli Pract, 2019, 120: 17-30. |
| [3] | Murali G, Sravya G S N, Jaya J, et al. A review on hybrid thermal management of battery packs and it’s cooling performance by enhanced PCM, Renew[J]. Renew Sustain Energ Rev, 2021, 150: No. 111513. |
| [4] | Abubakar M G, Karem E E, WANG Qiuwang, et al. Thermal management evaluation of Li-ion battery employing multiple phase change materials integrated thin heat sinks for hybrid electric vehicles[J]. J Power Sources. 2021, 516: No. 230680. |
| [5] | YANG Wen, ZHOU Fei, ZHOU Haobing, et al. Thermal performance of axial air cooling system with bionic surface structure for cylindrical lithium-ion battery module[J]. Int’l J Heat Mass Trans, 2020, 161: No. 120307. |
| [6] | CHEN Yiming, CHEN Kai, DONG Yuan et al. Bidirectional symmetrical parallel mini-channel cold plate for energy efficient cooling of large battery packs[J]. Energy, 2022, 242: No. 122553 |
| [7] | LIU Fen, WANG Jianfeng, LIU Yiqun, et al. Performance analysis of phase-change material in battery thermal management with bionic leaf vein structure[J]. Appl Therm Engi. 2022, 210: No. 118311. |
| [8] | Mohamed Moussa I E, Mustapha K, Abdou M T. A passive thermal management system of Li-ion batteries using PCM composites: Experimental and numerical investigations[J]. Int’l J Heat Mass Trans, 2021, 169: No. 120894. |
| [9] | Sahin G, Erdal C, Sylvie L. Canopy-to-canopy liquid cooling for the thermal management of lithium-ion batteries: A constructal approach[J]. Int’l J Heat Mass Trans. 2022, 182: No. 121918. |
| [10] | HE Linfeng, TANG Xianwen, LUO Qiliang, et al. Structure optimization of a heat pipe-cooling battery thermal management system based on fuzzy grey relational analysis[J]. Int’l J Heat Mass Trans, 2022, 182: No. 121924. |
| [11] | REN Ruyang, ZHAO Yanhua, DIAO Yuanhua, et al. Active air cooling thermal management system based on U-shaped micro heat pipe array for lithium-ion battery[J]. J Power Sources, 2021, 507: No. 230314. |
| [12] | SHENG Lei, SU Lin, ZHANG Hua, et al. Numerical investigation on a lithium ion battery thermal management utilizing a serpentine-channel liquid cooling plate exchange[J]. Int’l J Heat Mass Trans, 2019, 141: 658-668. |
| [13] | FAN Yiwei, WANG Zhaohui, FU Ting, et al. Numerical investigation on lithium-ion battery thermal management utilizing a novel tree-like channel liquid cooling plate exchanger[J]. Int’l J Heat Mass Trans. 2022, 183: No. 122143. |
| [14] | YAN Yunfei, YAN Honggyu, YIN Siyou, et al. Single/multi-objective optimizations on hydraulic and thermal management in micro-channel heat sink with bionic Y-shaped fractal network by genetic algorithm coupled with numerical simulation[J]. Int’l J Heat Mass Trans, 2019, 129: 468-479. |
| [15] | CHEN Sheng, Antonio F M, Murat A. Constructal design in the cooling and hydraulic performance of tube heat sinks[J]. Int’l Commun Heat Mass Trans, 2021, 129: No. 105668. |
| [16] | LIU Fei, WANG Jianfeng, LIU Yiqun, et al. Natural convection characteristics of honeycomb fin with different hole cells for battery phase-change material cooling systems[J]. J Energ Store, 2022, 51: No. 104578. |
| [17] |
Khoshvaght-Aliabadi M, Hassani M S, Mazloumi H S. Comparison of hydrothermal performance between plate fins and plate-pin fins subject to nanofluid-cooled corrugated miniature heat sinks[J]. Microelectron Reliab, 2017, 70: 84-96.
doi: 10.1016/j.microrel.2017.01.005 URL |
| [18] | ZHANG Furen, WU Bo, DU Bolin. Heat transfer optimization based on finned microchannel heat sink[J]. Int’l J Therm Sci. 2022, 172(1): No.107357. |
| [19] | YANG Dawei, WANG Yan, DING Guifu, et al. Numerical and experimental analysis of cooling performance of single-phase array microchannel heat sinks with different pin-fin configurations[J]. Appl Therm Engi, 2017, 112: 1547-1556. |
| [20] | HUANG Yicang, XU Mingliang, LI Hui, et al. Novel thermal design of micro-bream-fin heat sink using contour-extraction-based (CEB) method[J]. Int’l J Therm Sci, 2021, 165: No. 106952 |
| [21] | ZHANG Furen, HE Yanxiao, WANG Chengdeng et al. A new type of liquid-cooled channel thermal characteristics analysis and optimization based on the optimal characteristics of 24 types of channels[J]. Int’l J Heat Mass Trans, 2023, 202: No.123734. |
| [22] | ZHANG Furen, YI Mengfei, WANG Pengwei, et al. Optimization design for improving thermal performance of T-type air-cooled lithium-ion battery pack[J]. J Energ Stor, 2021, 44: No. 103464. |
| [23] | Ullah Khan Muhammad Zia, Younis Y M, Naveed A, et al. Investigation of heat transfer in wavy and dual wavy micro-channel heat sink using alumina nanoparticles[J]. Case Stud Therm Engi. 2021, 28: No. 101515. |
| [1] | 李雪, 张甫仁, 路兴隆, 黄郅凯, 赵浩东, 史亚洲. 锂离子动力电池蛇形通道液体冷却板的性能优化[J]. 汽车安全与节能学报, 2023, 14(3): 385-392. |
| [2] | 雍安姣, 项阳, 付永宏, 汪爽, 郭廷, 王勇. 搭配低温散热器的PHEV电池冷却系统的节能效果[J]. 汽车安全与节能学报, 2022, 13(4): 796-803. |
| [3] | 张甫仁, 鲁福, 吴博, 肖康. 内部结构组合形式优化对冷板冷却性能的影响[J]. 汽车安全与节能学报, 2022, 13(2): 368-377. |
| [4] | 陈友鹏, 张国庆, 秦启超, 覃卓庚, 邓坚, 李新喜. 电动汽车用柔性复合相变材料的电池热管理系统[J]. 汽车安全与节能学报, 2022, 13(1): 168-175. |
| [5] | 蔡森林, 魏名山, 宋盼盼, 魏洪革. 基于直流道液冷板的动力电池冷却性能仿真[J]. 汽车安全与节能学报, 2021, 12(3): 380-385. |
| [6] | 李平,安富强,张剑波,王浩然. 电动汽车用锂离子电池的温度敏感性研究综述[J]. 汽车安全与节能学报, 2014, 5(03): 224-237. |
| [7] | 袁昊, 王丽芳, 王立业. 基于液体冷却和加热的电动汽车热管理系统[J]. 汽车安全与节能学报, 2012, 3(4): 371-380. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||