欢迎访问《汽车安全与节能学报》,

汽车安全与节能学报 ›› 2025, Vol. 16 ›› Issue (4): 577-586.DOI: 10.3969/j.issn.1674-8484.2025.04.008

• 汽车节能与环保 • 上一篇    下一篇

基于跟驰对的CO2排放特性的生态车辆跟驰策略

于谦1(), 郭圆圆1, 杨鸣鹏2, 张玉婷1   

  1. 1 长安大学 运输工程学院西安 710064, 中国
    2 天津市政工程设计研究总院有限公司成都分公司成都 610041, 中国
  • 收稿日期:2024-12-06 修回日期:2025-03-29 出版日期:2025-08-30 发布日期:2025-08-27
  • 作者简介:于谦(1988—),女(汉),山西,讲师。E-mail:yuqian@chd.edu.cn
  • 基金资助:
    国家自然科学基金青年科学基金(52002032);陕西省自然科学基础研究计划资助项目(2024JX-YBQN-0427);陕西省自然科学基础研究计划资助项目(2025JC-YBMS-446)

Eco-car-following strategy based on the CO2 emission characteristics of car-following pairs

YU Qian1(), GUO Yuanyuan1, YANG Mingpeng2, ZHANG Yuting1   

  1. 1 School of Transportation Engineering, Chang'an University, Xi’an 710064, China
    2 Chengdu Branch, Tianjin Municipal Engineering Design and Research Institute, Chengdu 610041, China
  • Received:2024-12-06 Revised:2025-03-29 Online:2025-08-30 Published:2025-08-27

摘要:

提出了一种在智能网联汽车环境下的混合交通流的生态车辆跟驰(ECF)策略,探索其跟驰行为的CO2排放。基于车辆轨迹数据,提取多测度的跟驰行为特征参数。建立了极端梯度提升(XGBoost)模型,利用加性解释(SHAP)算法计算并分析了跟驰行为特征参数对跟驰过程中CO2排放量的影响规律。标定了人工驾驶车辆的智能驾驶员模型,并基于城市交通仿真(SUMO)平台以及自动驾驶车辆(CAV)的自适应巡航控制(ACC)、协同式自适应巡航控制(CACC)模型;在11个混合交通流仿真场景下,分析ECF策略的CO2减排有效性。结果表明:当CACC车辆占比50%以上时,CACC-CACC跟驰对的CO2瞬时质量排放量减少比例超过60%。从而,本文ECF策略能够降低车辆在混合交通流场景下跟驰过程中CAV和CACC-CACC跟驰对的CO2排放。

关键词: 自动驾驶车辆(CAV), 混合交通流, 生态车辆跟驰(ECF)策略, 跟驰行为, 城市交通仿真(SUMO) 平台

Abstract:

An eco-car-following (ECF) strategies was explored with the CO2 emissions of car-following behavior in mixed traffic flow under the environment of intelligent connected vehicles. The vehicle trajectory data was used to extract multi-dimensional car-following behavior feature parameters. An eXtreme Gradient Boosting (XGBoost) model was established with calculating and analyzing the effects of car-following behavior feature parameters on CO2 emissions during the car-following process by using the Shapley Additive exPlanations (SHAP) algorithm. The intelligent driver model of human-driven vehicles was calibrated. The Simulation of Ur-ban MObility (SUMO) platform was using to simulate 11 mixed traffic scenarios. The Adaptive Cruise Control (ACC) and the Cooperative Adaptive Cruise Control (CACC) models were employed for Connected and Automated Vehicles (CAVs). The results show that the instantaneous mass CO2 emissions of CACC-CACC vehicle pairs de-crease by more than 60% when the proportion of CACC vehicles exceeds 50%. There-fore, the strategy reduces CO2 emissions for CAVs and CACC-CACC car-following pairs in mixed traffic flow scenarios.

Key words: connected automated vehicles (CAVs), mixed traffic flow, eco-car-following (ECF) strategy, car-following behavior, simulation of urban mobility (SUMO) platform

中图分类号: