欢迎访问《汽车安全与节能学报》,

JASE ›› 2015, Vol. 6 ›› Issue (02): 139-144.DOI: 10.3969/j.issn.1674-8484.2015.02.005

• 汽车安全 • 上一篇    下一篇

侧风中前窗角度对汽车稳定性影响的数值模拟

张志飞1,2,李 勋2,徐中明1,2,贺岩松2   

  1. 1. 重庆大学 机械传动国家重点实验室,重庆 400030,中国;
    2. 重庆大学 汽车工程学院 重庆 400030,中国)
  • 收稿日期:2014-08-18 出版日期:2015-06-25 发布日期:2015-07-08
  • 作者简介:张志飞(1983 -),男(汉),河南,副教授。E-mail: cquzzf@cqu.edu.cn
  • 基金资助:

    中央高校基本科研业务费科研专项(CDJZR14115501)

Optimal design of the vehicle front-end structure stiffness for pedestrian lower leg protection

ZHANG Zhifei1,2, LI Xun2, XU Zhongming1,2, HE Yansong2   

  1. 1. State Key Laboratory of Mechanical Transmission, Chongqing 400030, China ;
    2. School of Automotive Engineering, Chongqing University, Chongqing 400030, China
  • Received:2014-08-18 Online:2015-06-25 Published:2015-07-08

摘要:

为改善汽车的行人下肢保护性能,提出了一种基于多刚体动力学模型的汽车前端结构刚度设
计方法。依据下腿型对保险杠的碰撞试验和汽车前端结构的有限元模型,仿真获得腿部碰撞区域的
刚度参数和汽车前端的几何位置参数,在Maydymo 中建立了该模型。利用全局响应法(GRSM) 进行
优化求解。以下肢胫骨加速度、膝部弯曲角度和膝部剪切位移这3 个伤害指标归一化后的均方估计
(MSE) 为优化目标,以保险杠和副保险杠的屈服力和最大变形量为4 个设计变量。结果表明:目标函
数降低了73.9%,胫骨加速度下降了50.3%,膝部弯曲角下降了48.9%。这说明:对汽车前端结构刚度
的优化可以有效提升其行人下肢保护性能。

关键词: 行人保护, 多刚体模型, 汽车, 刚度设计, 优化

Abstract:

A design method of vehicle front-end structure stiffness was proposed based on a multi-body
dynamics model to improve pedestrian lower leg protection. The model was established in Madymo, based on
the crash tests of the leg form impact to car and a FE (finite element) model of the vehicle front-end structure,
according to the geometry and stiffness parameters which were obtained by the finite element analysis on
the collision area. An optimal design was completed by the global response surface method (GRSM). The
optimal objective was the mean square evaluation (MSE) of normalization of three injury criterion (the tibia peak
acceleration, knee bending angle, knee shear displacement) with 4 design variables including the yield forces
and the maximum deformations for the bumper and the auxiliary bumper. The results show that the objective
reduces by 73.9%, the tibia peak acceleration decrease by 50.3% with the knee bending angle decreasing
48.9%. Therefore, the optimization of the vehicle front-end structure stiffness improves the performance of
pedestrian leg protection.

Key words: pedestrian protection, multi-body model, automobile, design of stiffness, optimization