欢迎访问《汽车安全与节能学报》,

汽车安全与节能学报 ›› 2015, Vol. 6 ›› Issue (02): 150-155.DOI: 10.3969/j.issn.1674-8484.2015.02.007

• 汽车安全 • 上一篇    下一篇

拼焊板保险杠横梁耐撞性的离散优化设计

肖志,李素雯,孔春玉,刘洪斌,莫富灏   

  1. 湖南大学 汽车车身先进设计制造国家重点实验室,长沙 410082,中国
  • 收稿日期:2014-09-21 出版日期:2015-06-25 发布日期:2015-07-08
  • 作者简介:第一作者 / First author : 肖志(1977 -),男(汉),湖南,讲师。E-mail: hnuxiao@163.com 第二作者 / Second author : 李素雯硕士研究生。E-mail: suwenli0215@gmail.com
  • 基金资助:

    国家自然科学基金项目(51475154 ;51205119)

Discrete optimal design for crashworthiness of tailor welded blank bumper beam

XIAO Zhi, LI Suwen, KONG Chunyu, LIU Hongbin, MO Fuhao   

  1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
  • Received:2014-09-21 Online:2015-06-25 Published:2015-07-08

摘要:

为实现汽车设计的耐撞性和轻量化,将高强度钢拼焊板 (TWB)结构运用到保险杠横梁,结
合多目标离散优化方法,进行优化设计。运用Hypermesh 软件,建立了原保险杠模型和拼焊板保险
杠模型,并用LS-DYNA 软件进行验证。横梁内、外板均由厚度不同的5 块高强度钢板焊接而成。以
提高保险杠横梁的吸能量,控制质量增加为优化目标,进行横梁三点静压仿真试验,对板材的材料
和厚度参数进行迭代优化。结果表明:优化后的拼焊板保险杠横梁吸能量提高81.66%,质量只增加
8.96% ;从而满足了耐撞性和轻量化的要求,并具有更好的变形模式和碰撞载荷特性。

关键词: 汽车安全, 耐撞性, 保险杠横梁, 拼焊板(TWB), 离散优化, 三点静压试验

Abstract:

An optimized car bumper beam with crashworthiness and lightweight was designed applying Tailor
Welded Blanks (TWB) structure with high-strength steel plates to a bumper beam, and combining the multiobjective
discrete optimization method. A model for original bumper beam and a model of TWB bumper beam
were established by using Hypermesh software, and then validated by LS-DYNA software. The outer and the
inner plates of the TWB beam were made of 5 blanks with different thickness. The targets of iterate optimization
were improving the energy absorbing and controlling the mass with different material parameters and different
thickness parameters based on the Three Point Static Loading Test simulation of the TWB beam. The results
show that the energy absorbed increases 81.66% for the optimized TWB beam with only an increase of 8.96%
for mass. Therefore, the optimized TWB beam meets the demands of crashworthiness and lightweight with a
better deformation mode and better collision load characteristics.

Key words: vehicle safety, bumper beam, tailor welded blanks (TWB), discrete optimization, three point static loading test