欢迎访问《汽车安全与节能学报》,

JASE

• 汽车安全 • 上一篇    下一篇

基于差动制动的车辆侧翻稳定性控制的数字仿真

赵树恩,张 雄   

  1. (重庆交通大学 机电与车辆工程学院,重庆 400074,中国)
  • 收稿日期:2018-01-15 出版日期:2018-06-30 发布日期:2018-07-04
  • 作者简介:第一作者 / First author : 赵树恩(1972—),男( 汉),陕西,教授。E-mail: zes0916@163.com。 第二作者 / Second author : 张雄(1992—),男( 汉),四川,硕士研究生。E-mail: 627825984@qq.com。
  • 基金资助:

    国家重点研发计划项目(2016YFB0100905) ;中国博士后基金项目(2014M562259) ;山地城市交通系统与安全重庆市重点实验室开放基金(KTSS201305)。

Digital simulation of vehicle-rollover stability-control based on differential braking

ZHAO Shu'en,  ZHANG Xiong   

  1. (School of mechanical and Vehicular Engineering, Chongqing Jiaotong University, Chongqing 400074, China)
  • Received:2018-01-15 Online:2018-06-30 Published:2018-07-04

摘要:

       为提高重型商用车在高速转弯行驶中抗侧翻能力,提出融合动态载荷转移率和车辆横摆角速度的差动制动防侧翻主动控制策略。建立包含车辆侧向、横摆和侧倾运动的3 自由度侧翻动力学模型。以载荷转移率(LTR) 和车辆横摆角速度为侧翻动态稳定因子,运用线性二次型最优控制理论,采用TruckSim 与 Matlab / Simulink,对高速鱼钩工况和双移线工况进行联合数字仿真。结果表明:采用该策略后,侧向加速度改善6.75%,横向载荷改善33%;达到侧翻极限时,传统车最终发生侧翻。因而,该策略可提高重型车辆的防侧翻控制能力和高速激转工况下车辆的横向稳定性。

关键词: 汽车安全 ,  动态稳定性 , 防侧翻 , 最优控制 , 差动制动

Abstract:

A differential braking anti-rollover active control strategy was proposed combining dynamic load transfer rate and vehicle yaw rate to improve the anti-rollover ability for commercial heavy-duty vehicles driving in turn at high-speed. A dynamics model was established for the vehicle rollover with 3-freedomdegree
including the lateral, the yaw and the roll motions. Joint digital-simulations were performed by TruckSim and Matlab/Simulink at high-speed fishhook condition and at double lane change condition by using a linear quadratic optimal control theory with load-transfer-rate (LTR) and vehicle-yaw-rate as rollover dynamic-stabilization-factors. The results show that the lateral acceleration is improved by a rate of 6.75% and the lateral load-conversion is improved by a rate of 33% when adopted this strategy, meanwhile eventually turns over rollover for conventional vehicle when reaching rollover limit. Therefore, this strategy can improve the rollover control capability and the lateral stability of heavy vehicles under high-speed aggressive conditions.

Key words: automobile safety , dynamic stability , anti-rollover , optimal control , differential braking