欢迎访问《汽车安全与节能学报》,

汽车安全与节能学报 ›› 2022, Vol. 13 ›› Issue (4): 785-795.DOI: 10.3969/j.issn.1674-8484.2022.04.020

• 汽车节能与环保 • 上一篇    下一篇

基于等效因子的Q学习燃料电池汽车能量管理策略

尹燕莉1,3(), 张鑫新1, 潘小亮2, 詹森1, 黄学江1, 王福振1   

  1. 1.重庆交通大学 机电与车辆工程学院,重庆 400074,中国
    2.重庆长安汽车股份有限公司,重庆 401120,中国
    3.包头北奔重型汽车有限公司,包头 014000,中国
  • 收稿日期:2022-01-12 修回日期:2022-04-25 出版日期:2022-12-31 发布日期:2023-01-01
  • 作者简介:尹燕莉(1980—),女(汉),讲师。E-mail: cqu_ylyin@126.com
  • 基金资助:
    城市轨道交通车辆系统集成与控制重庆市重点实验室开放课题基金(CKLURTSIC-KFKT-212005);重庆市教委科学技术研究项目(KJQN202000734);重庆市技术创新与应用发展重点项目(cstc2020jscx-dxwtBX0025)

Equivalent factor of energy management strategy for fuel cell hybrid electric vehicles based on Q-Learning

YIN Yanli1,3(), ZHANG Xinxin1, PAN Xiaoliang2, ZHAN Shen1, HUANG Xuejiang1, WANG Fuzhen1   

  1. 1. School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China
    2. Chongqing Changan Automobile Co. LTD, Chongqing 401120, China
    3. Baotou Bei-Ben Heavy Vehicle Co. LTD, Baotou 014000, China
  • Received:2022-01-12 Revised:2022-04-25 Online:2022-12-31 Published:2023-01-01

摘要:

为提高燃料电池混合动力汽车 (FCHEV) 燃料经济性以及维持蓄电池能量平衡,该文提出了基于等效因子的Q-learning算法的能量管理策略。构建等效耗氢量最小与维持蓄电池荷电状态(SOC)平衡的目标函数,建立FCHEV动力源能量流转化平衡模型,通过能量转化平衡机理得到耗氢量的等效因子;在城市循环+全球轻型汽车测试循环(UDDS+WLTC)工况下,对需求功率的转移概率矩阵进行求解,利用Q-learning算法离线优化燃料电池和蓄电池的输出功率;基于MATLAB/Simulink平台建立了前向仿真模型,进行整车性能的仿真试验。结果表明:在WLTC循环工况下,该策略的100 km等效耗氢量为0.730 kg,接近基于动态规则(DP)控制策略的耗氢量,且SOC保持在合理的范围内,验证了该策略的有效性;在西宁市实际工况下,验证了本文所提控制策略的适应性。

关键词: 燃料电池混合动力汽车(FCHEV), 等效因子, Q-learning算法, 能量管理

Abstract:

An energy management strategy based on equivalent factor Q-learning algorithm was proposed to improve the fuel economy of fuel cell hybrid electric vehicles (FCHEVs) and maintain the battery energy balance. The objective function of minimizing equivalent hydrogen consumption and maintaining battery state of charge (SOC) was constructed to establish the energy flow conversion balance model of FCHEVs power source, and the equivalent factor of hydrogen consumption was obtained through the energy conversion balance mechanism. The transfer probability matrix of required power was solved under urban dynamometer driving schedule + world light vehicle test cycle (UDDS+WLTC) conditions, and the output power of fuel cells and batteries was optimized offline by Q-learning algorithm. The forward simulation model was established based on MATLAB/Simulink platform, and the vehicle simulation was carried out under different working conditions. The results show that the equivalent of the hydrogen consumption per 100 km is 0.730 kg under WLTC cycle conditions in the proposed strategy, which is close to that based on the dynamic programming (DP) control strategy, and the SOC is kept within a reasonable range, which verifies the effectiveness of the proposed strategy. And the adaptability of the proposed control strategy is also verified in the actual working conditions of Xining City.

Key words: fuel cell hybrid electric vehicle (FCHEV), equivalent factor, Q-learning algorithm, energy management

中图分类号: