欢迎访问《汽车安全与节能学报》,

汽车安全与节能学报 ›› 2014, Vol. 5 ›› Issue (04): 360-366.DOI: 10.3969/j.issn.1674-8484.2014.04.008

• 汽车安全 • 上一篇    下一篇

盘式制动器摩擦片形状设计对高频尖叫的影响

李清1,管迪华2,杜永昌2,王霄锋2#br#   

  1. 1. 长安汽车工程研究总院,重庆 401120 ;2. 清华大学,汽车安全与节能国家重点实验室,北京 100084)
  • 收稿日期:2014-07-09 出版日期:2014-12-25 发布日期:2014-12-29
  • 通讯作者: 管迪华(1933 - ),女( 汉),江苏,教授。E-mail: guandh@tsinghua.edu.cn
  • 作者简介:李清(1978 - ),男( 汉),重庆,工程师。E-mail: yanxy1@changan.com.cn

Effect of pad shapes on disc brake squeal at high frequency

LI Qing1, GUAN Dihua2, DU Yongchang2, WANG Xiaofeng2   

  1. 1. Changan Auto Global R&D Center, Chongqing 401120, China;
    2. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
  • Received:2014-07-09 Online:2014-12-25 Published:2014-12-29

摘要:

恰当的制动片形状设计,可抑制盘式制动器的高频尖叫。为分析发生噪声的原因和抑制方法,
对一个存在13 kHz 尖叫的制动器,建立了一个截止到27 kHz、含300 自由度的模型。该模型用复特
征值分析、子结构模态构成分析、能量馈入分析等方法,分析了对制动片开槽、倒角及其组合等4
种形状修改模式降噪的机制。结果表明:双开槽的制动片修改,对抑制噪声效果不明显;但对两端做
倒角的制动片修改,效果明显,其特征值实部与原设计相比,下降50%,这一结果与试验定性一致。
这表明:制动片倒角导致各阶模态振型的改变及其叠加,因此,降低了对噪声模态的能量馈入。

关键词: 汽车工程, 盘式制动器, 制动噪声, 复特征值, 子结构模态构成, 能量馈入

Abstract:

A proper design of the disc brake pad shape can restrain high frequency brake squeal. A disc
brake model was built with 300 freedoms and the cut-off frequency of 27kHz to analyze the effect of pad shape
design on the 13kHz squeal. Complex eigenvalue analysis, substructure modal contribution analysis, and feedin
energy analysis were utilized to analyze the effects of 4 pad shapes including the original, the double slotting,
the chamfering, and their combination on the squeal reduction mechanism. The results show that double slotting
pads have little effect but chamfering on both ends has remarkable effect on the squeal. The real part of the
complex eigenvalue decreases by 50% comparing with the original design, which accords with the relevant test
results qualitatively. Due to the variation of modal shape and their composition, the pad chamfering design cuts
down feed-in energy to the noise mode.

Key words: vehicle engineering, disc brakes, brake squeal, complex eigenvalue, substructure mode contribution, feed-in energy