欢迎访问《汽车安全与节能学报》,

汽车安全与节能学报 ›› 2023, Vol. 14 ›› Issue (5): 580-590.DOI: 10.3969/j.issn.1674-8484.2023.05.007

• 智能驾驶与智慧交通 • 上一篇    下一篇

智能汽车主动避撞工况的高实时预测控制

段京良1(), 陈良发1, 王文轩2, 焦春绚1, 刘征宇2, 马飞1, 李升波2,*()   

  1. 1.北京科技大学 机械工程学院,北京 100083,中国
    2.清华大学,汽车安全与节能国家重点实验室, 北京 100080,中国
  • 收稿日期:2023-03-20 修回日期:2023-07-13 出版日期:2023-10-31 发布日期:2023-10-30
  • 通讯作者: *李升波,教授。E-mail:lishbo@tsinghua.edu.cn
  • 作者简介:段京良(1992—),男(汉),山东,副教授。E-mail:duanjl@ustb.edu.cn
  • 基金资助:
    国家自然科学基金(52202487);国家自然科学基金(62273256);汽车安全与节能国家重点实验室开放基金课题(KFY2212)

High real-time predictive control for active collision avoidance of intelligent vehicles

DUAN Jingliang1(), CHEN Liangfa1, WANG Wenxuan2, JIAO Chunxuan1, LIU Zhengyu2, MA Fei1, LI Shengbo2,*()   

  1. 1. University of Science and Technology Beijing, Beijing 100083, China
    2. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
  • Received:2023-03-20 Revised:2023-07-13 Online:2023-10-31 Published:2023-10-30

摘要:

为满足复杂交通场景下智能汽车轨迹跟踪避撞控制的高实时性要求,该文采用了一种循环模型预测控制算法(RMPC)将在线优化问题转化为循环策略参数的离线求解,并进行了仿真试验。根据车辆主动避撞的约束条件,引入惩罚函数将约束型主动避撞优化控制问题转化为无约束有限时域最优控制问题;进而利用循环函数逼近得到不同预测步长控制问题的最优解;最后将算法部署到原型控制器,结合CarSim平台验证了算法的避撞性能以及在线计算的高效性。结果表明:预测步数从12增加到20步,避撞过程最小车距由0.34 m提升至1.38 m,千次实验碰撞次数由44下降到0;与常用在线优化求解器相比,该算法在预测步数为15时,其计算效率提升超过5.6倍。

关键词: 智能汽车, 循环模型预测控制算法(RMPC), 循环函数, 横向主动避撞

Abstract:

A recurrent model predictive control (RMPC) algorithm was adopted to meet the high real-time requirements for active collision avoidance control in complex traffic scenarios. RMPC transformed the online optimization problem into an offline solution of recurrent policy parameters, and simulation experiments were conducted to validate its effectiveness. By introducing a penalty function, the constrained active collision avoidance optimization control problem was formulated as an unconstrained finite-time optimal control problem. The optimal solution of the control problem with different prediction steps was represented by a recurrent neural network. The learned policy to the prototype controller was deployed and its collision avoidance performance and online computational efficiency was verified by using CarSim. The results shows that the minimum vehicle distance during the collision process increases from 0.34 m to 1.38 m with the prediction step increasing from 12 to 20, and the number of collisions in a thousand experiments decreases from 44 to 0. Furthermore, the algorithm demonstrates a computational efficiency improvement of over 5.6 times compared to commonly used online optimization solvers when the prediction step is 15.

Key words: intelligent vehicle, model predictive control, recurrent function, lateral active collision avoidance

中图分类号: