欢迎访问《汽车安全与节能学报》,

JASE ›› 2016, Vol. 07 ›› Issue (03): 272-278.DOI: 10.3969/j.issn.1674-8484.2016.03.004

• 汽车安全 • 上一篇    下一篇

某混合动力汽车侧面碰撞中B 柱可靠性优化设计

曹立波1,刘衡1,武和全1,2   

  1. 1. 湖南大学 汽车车身先进设计制造国家重点实验室,长沙 410082 ;
    2. 长沙理工大学 工程车辆轻量化与可靠性技术湖南省高校重点实验室,长沙 410114
  • 收稿日期:2015-12-02 出版日期:2016-09-25 发布日期:2016-09-30
  • 作者简介:第一作者 / First author : 曹立波(1964—),男( 汉),湖南,教授。E-mail: hdclb@163.com 第二作者 / Second author : 刘衡(1991—),男( 汉),硕士研究生。E-mail: 1540807016@qq.com
  • 基金资助:

    国家自然科学基金资助项目(51405035) ;汽车车身先进设计制造国家重点实验室开放基金(31375006)

Reliability optimal design of B-pillar for a hybrid electric vehicle in side impact

CAO Libo1, LIU Heng1, WU Hequan1,2   

  1. 1. State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Changsha 410082, China;
    2. Key Laboratory of Lightweight and Reliability Technology for Engineering Vehicle, College of Hunan province, Changsha 410004, China
  • Received:2015-12-02 Online:2016-09-25 Published:2016-09-30

摘要:

对某混合动力汽车侧面碰撞B 柱进行可靠性优化设计。设计中,结合试验设计理论、响应面模型、可靠性优化设计,基于产品质量工程,以中国新车评价规程(C-NCAP) 和美国新车评价规程(US-NCAP) 的侧面碰撞试验法规为基础,结合国内外交通事故调查统计数据。选取对汽车侧面碰撞安全性有重要影响的B柱内板、外板和加强板的壁厚和内板、外板材料屈服强度为设计变量。结果表明:在满足碰撞角度在- 30°~30°和碰撞速度在40~60 km/h 的混合动力汽车B 柱耐撞性和可靠性要求条件下,90%、95%可靠性优化设计分别使得B 柱质量降低了11.86% 和10.34%。

关键词: 混合动力汽车, 侧面碰撞, B 柱, 试验设计, 响应面模型, 优化

Abstract:

A reliability optimization design was done for a B-pillar of a hybrid electric vehicle in side impact. The design combined using of experiments, the response surface models, the reliability theory and the reliability of design optimization method based on the product quality engineering, according to the side impact test regulations of the China New Car Assessment Program (C-NCAP) and the United States New Car Assessment Program (US-NCAP), and using the statistics from domestic and international traffic accident investigation. The design variables were considered choosing the dimensions (such as thicknesses) and the materials (such as yield strengths) of the inner panel, the outer panel and the reinforcing plate, which play a major role in the safety performance in side impact crashes. The results show that this design makes the B-pillar mass decrease 11.86% and 10.34% respectively with the reliabilities of 90% and 95% with the impact angle in -30°~30° and impact velocity in 40~60 km/h.

Key words: hybrid electric vehicle, side impact, B-pillar, experimental design, response surface model, optimization