欢迎访问《汽车安全与节能学报》,

汽车安全与节能学报 ›› 2015, Vol. 6 ›› Issue (01): 97-101.DOI: 10.3969/j.issn.1674-8484.2015.01.013

• 汽车节能与环保 • 上一篇    

大倍率放电时电动汽车用锂离子电池的热性能

张云云1,白 洁1,张国庆2   

  1. 1. 广东理工职业学院 机械与自动化工程系,广州510009,中国;
    2. 广东工业大学 材料与能源学院,广州 510006,中国
  • 收稿日期:2014-11-14 出版日期:2015-03-25 发布日期:2015-04-02
  • 作者简介:张云云(1986—),女( 汉),安徽,助教。Email: gdpi2013@163.com
  • 基金资助:

    广东省战略性新兴产业核心技术攻关项目(2011A010802001)

Electrical and thermal performances of lithium-ion battery for#br# electric vehicle at high discharge rate

ZHANG Yunyun 1, BAI Jie1, ZHANG Guoqing2   

  1. 1. Guangdong Polytechnic Institute, Department of Mechanical and Automation Engineering, Guangzhou 510009, China;
    2. Guangdong University of Technology, School of Material and Energy, Guangzhou 510006, China
  • Received:2014-11-14 Online:2015-03-25 Published:2015-04-02

摘要:

为保证锂离子动力电池安全、可靠和高效的运行,实验研究了其在大倍率放电时的热性能。
实验中,对于一款商业电动车用3.2 V、50 Ah 锂离子电池,用充放电测试仪和温湿度巡检仪,控制放
电倍率为1C~3C(50~150 A)。结果表明:电池放电倍率越大,电池两端工作电压平台越低,电池放电
量越小,电池表面的温升率越大。当放电倍率达到3C (150 A) 时,电池表面温度超出其安全工作温度,
因而,锂离子动力电池在大倍率放电时,需要为其增加散热设备。拟合了一组用于计算不同放电倍率
下电池的瞬时产热量的经验公式。这些公式可用于锂离子动力电池的辅助散热设备的设计和选择。

关键词: 电动汽车, 动力锂离子电池\热性能, 倍率性能, 瞬时产热量, 辅助散热设备

Abstract:

The electrical and thermal performances of power lithium-ion batteries used in electric vehicles were
experimentally investigated to guarantee the power lithium ion battery operate safely, reliably and efficiently.
A charge and discharge tester and a temperature / humidity recorder were used to control the various rate of
discharge at the arrange of 1C~3C (50~150 A) for a kind of 3.2 V/50 Ah lithium-ion power batteries commercial
applied. The test results show that the operator voltage platform between battery two ends is going to lower
with the output energy decreasing and the battery surface temperatures increasing when the discharged rate
increases. The temperature at the lithium-ion battery surface exceeds the temperature limit for battery safely
operating when the battery discharged rate up to 3C rate (or 150 A). Therefore, being equipped with cooling
device is necessary for battery to ensure battery operate safely and efficiently. A group of empirical formulae
was fitted for the battery transient heat production battery at various battery discharge rate. The formulas can be
used to design and select auxiliary cooling devices for power lithium-ion batteries.

Key words: electric vehicles, lithium-ion power battery, thermal performances, rate capability, transient heat generation rate, auxiliary cooling devices