欢迎访问《汽车安全与节能学报》,

JASE ›› 2017, Vol. 08 ›› Issue (02): 170-177.DOI: 10.3969/j.issn.1674-8484.2017.02.009

• 汽车安全 • 上一篇    下一篇

基于集成式线控液压制动系统的车辆稳定性控制

何祥坤,杨恺明,季学武﹡   

  1. 清华大学 汽车安全与节能国家重点实验室,北京 100084,中国
  • 收稿日期:2017-01-12 出版日期:2017-06-25 发布日期:2017-07-04
  • 通讯作者: 季学武(1964—),男(汉),安徽,副教授,E-mail: jixw@mail.tsinghua.edu.cn。
  • 作者简介:第一作者 / First author :何祥坤 (1989—),男 ( 汉 ),黑龙江,博士研究生,E-mail: hxk15@mails.tsinghua.edu.cn。
  • 基金资助:

    国家自然科学基金资助项目 (51375009); 清华大学自主科研计划资助项目(20161080033)。

Vehicle stability control based on integrated-electro- hydraulic brake system

HE Xiangkun, YANG Kaiming, JI Xuewu﹡ , WU Jian, LIU Yahui   

  1. State Key Laboratory of Automotive Safety and Energy, Department of Automotive Engineering, Tsinghua University, Beijing 100084, China
  • Received:2017-01-12 Online:2017-06-25 Published:2017-07-04

摘要:

为提高汽车在极限工况下的行驶稳定性,提出了一种基于集成式线控液压制动 (IEHB) 系统的车辆动力学稳定性控制策略。在多学科领域复杂系统建模仿真平台(AMESim)中建立了IEHB 执行机构、15自由度非线性车辆动力学物理仿真模型;采用分层控制构架,运用线性比例控制与非线性补偿控制设计了横摆力矩控制层,设计了制动力矩分配层和执行层以保证被控车辆对参考模型层输出的跟踪品质。结果表明:相比于基于传统车身电子稳定性控制系统(ESC)的动力稳定性控制系统,横摆角速度峰值跟踪误差减少13.6 %,收敛时间缩短 1.3 s,侧倾角、侧偏角、侧向加速度等也均有明显改善,车辆行驶稳定性显著提高。因而,本控制方法能确保车辆在极限工况下快速、准确地跟踪参考模型输出。

关键词: 汽车主动安全, 集成式线控液压制动 (IEHB) 系统, 物理仿真模型, 动力学稳定性, 分层控制构架, 非线性控制

Abstract:

A vehicle dynamics control strategy based on integrated-electro-hydraulic brake system (IEHB) was proposed to improve the driving stability of vehicle under extreme conditions. IEHB system actuator and a 15- DoF vehicle nonlinear dynamics physical simulation model were established in advanced modeling environrnent for performing simulation of engineering systems (AMESim). A hierarchical control structure adopted: yaw moment control layer was designed by utilizing linear proportional control and nonlinear compensation control method; The design of braking torque distributing layer and actuating layer ensured tracking quality of the controlled vehicle to output of reference model layer. The results show that the proposed control method can make the plant track the reference model output under extreme conditions rapidly and accurately. Compared with vehicle dynamics stability control system based on conventional electronic stability control system (ESC), the peak tracking error of yaw rate is reduced by 13.6%, and the convergence time is shortened by 1.3 s. The performance of some vital dynamic parameters, including roll angle, sideslip angle and lateral acceleration, are significantly improved. Vehicle driving stability is optimized remarkably. Therefore, this control method can guarantee the vehicle quickly and accurately track the output of reference model under extreme driving condition.

Key words: automotive safety, integrated-electro-hydraulic brake (IEHB) system, physical simulation model, dynamic stability, hierarchical control structure, nonlinear control