欢迎访问《汽车安全与节能学报》,

JASE ›› 2020, Vol. 11 ›› Issue (1): 53-60.DOI: 10.3969/j.issn.1674-8484.2020.01.005

• 汽车安全 • 上一篇    下一篇

考虑气动阻力和横风稳定的汽车车身多目标优化设计

亓 昌1,2,3,韩元吉 2,4,杨 姝 2* ,吕振华3#br#   

  1. (1. 工业装备结构分析国家重点实验室,大连理工大学,大连116024,中国;
        2. 大连理工大学,汽车工程学院, 大连116024,中国;
        3. 汽车安全与节能国家重点实验室,清华大学,北京 100084,中国;
        4. 中国核动力研究设计院, 核反应堆系统设计技术重点实验室,成都 610213,中国)
  • 收稿日期:2019-06-04 出版日期:2020-03-31 发布日期:2020-04-01
  • 通讯作者: 杨姝(1978—),女(汉),辽宁,副教授。E-mail: yangshu@dlut.edu.cn。
  • 作者简介:第一作者 / First author: 亓昌(1978—),男(汉),陕西,教授。E-mail: qichang@dlut.edu.cn。
  • 基金资助:
    国家自然科学基金资助项目 (51475070); 汽车安全与节能国家重点实验室开放基金 (KF1809)。

Multi-objective optimization design of auto body considering aerodynamic resistance and crosswind stability

QI Chang 1,2,3, HAN Yuanji 2,4, YANG Shu 2*,LU Zhenhua 3   

  1. (1. State Key Laboratory of Structural Analyst for Industrial Equipment, Dalian University of Technology, Dalian 116024, China; 
        2. School of Automotive Engineering, Dalian University of Technology, Dalian 116024, China; 
        3. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China; 
        4. Nuclear Power Institute of China, Science and Technology on Reactor System Design Technology Laboratory, Chengdu 610005, China)
  • Received:2019-06-04 Online:2020-03-31 Published:2020-04-01

摘要: 综合考虑了气动阻力特性和横风稳定性,对车身外形参数进行了多目标自动优化设计。综 合利用参数化建模技术、计算流体力学(CFD)仿真、试验设计方法、响应面模型和智能优化算法, 集成Pro/Engineer 参数化建模和 ICEM 网格划分工具以及 Fluent 仿真软件,在多学科优化平台 modeFRONTIER 上,搭建了一种自动优化设计流程。利用该流程,基于遗传算法(GA)对 MIRA快 背式模型车身几何外形进行了改型设计,得到了考虑车身气动阻力特性和横风稳定性的最优权衡设计 解集。该结果使得气动阻力因数降低了5.2%,侧向力因数降低了5.8%。因而,实现了车身气动阻力 和横风稳定性的多目标优化。

关键词: 汽车车身设计 , 空气动力学 , 计算流体力学(CFD), 多目标优化 , 响应面模型 , 遗传算法(GA)

Abstract: A multi-objective automatic optimization-design of the body shape parameters was carried out considering aerodynamic drag characteristics and cross-wind stability. An automayic optimization process was set up on an optimization platform modeFRONTIER, comprehensively using parametric modeling technology, computational fluid dynamics (CFD), design of experiment (DOE), response surface model (RSM) and intelligent optimization algorithm, integrating Pro / Engineer, ICEM, and Fluent. Using this process, an MIRA fast-back auto body geometry was modified and designed to obtain an optimal trade-off design-solution-set considering the aerodynamic drag characteristics and cross-wind stability based on the genetic algorithm (GA). The result  reduces the aerodynamic drag coefficient by 5.2% and reduces the lateral force coefficient by 5.8%. Therefore,  a multi-objective optimization of aerodynamic resistance and crosswind stability of the vehicle body has been achieved.

Key words: auto-body design ,  aerodynamic , computational fluid dynamics (CFD) , multi-objective optimization , response surface model ,  genetic algorithm (GA)