欢迎访问《汽车安全与节能学报》,

JASE ›› 2018, Vol. 9 ›› Issue (3): 325-332.DOI: 10.3969/j.issn.1674-8484.2018.03.012

• 汽车节能与环保 • 上一篇    下一篇

用于电动客车车身正向概念设计的刚度链数学模型

尹佳成,刘子建*,秦 欢,钟浩龙   

  1. (湖南大学,汽车车身先进设计制造国家重点实验室,长沙410082,中国)
  • 收稿日期:2018-06-21 出版日期:2018-09-30 发布日期:2018-10-08
  • 通讯作者: 刘子建,教授。E-mail: zijianliu@hnu.edu.cn。
  • 作者简介:尹佳成(1993—),男( 汉),衡阳,硕士研究生。E-mail: jiachengyin@qq.com。
  • 基金资助:

    国家自然科学基金资助项目(51475152)

Stiffness-chain mathematical model in forward concept design for an electric bus-body

YIN Jiacheng, LIU Zijian*, QIN Huan, ZHONG Haolong   

  1. (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China)
  • Received:2018-06-21 Online:2018-09-30 Published:2018-10-08

摘要:

       考虑了电动客车质量约 2 t 的电池舱的强度和车身刚度,采用正向设计方法,进行了客车车身概念设计。用简化几何模型,以梁截面宽度、高度和厚度为设计变量,用半刚性梁单元的传递刚度矩阵法,建立了车身刚度链数学模型。以车身轻量化为目标函数,以车身动静刚度、固有频率和电池舱局部强度为约束条件,运用遗传算法,优化求解。对于标杆车车身的动静刚度与电池舱局部强度,将本模型的计算结果与有限元模型相应的计算结果进行对比分析。结果表明:优化后模型提高了扭转刚度、一阶固有频率,降低了弯曲刚度、车身质量、弯曲工况下和扭转工况下的电池舱应力。因而,本车身刚度链数学模型设计方法是可行的。

关键词: 纯电动客车, 车身正向设计, 传递刚度矩阵法, 刚度链, 局部强度, 车身轻量化

Abstract:

A bus-body concept-design for an electric-bus was made using a forward design method considering the strength and rigidity of battery compartment, which has a mass of about 2 t. A mathematical model of stiffness-chain of bus-body was obtained using a simplified geometry model of body taking the beam section width, the height and the thickness as design variables by using a transfer stiffness matrix method of semi-rigid beam element. A group of beam section property parameters satisfied the requirement of bus body performance were obtained taking bus-body lightweight as objective function, with the constraints of the staticdynamic stiffness, the natural frequency and the local strength of bus-body battery-cabin and then by usinggenetic algorithm optimal solution. The results by this method were compared with that by the FEM for the staticdynamic stiffness and the local strength of battery compartment of the benchmarking vehicle body. The results show that the torsional stiffness and first natural frequency of the optimized model are increased. The bending stiffness, body mass, and the battery cabin stress under bending and torsion conditions are reduced. Therefore, the design method of the stiffness-chain of electric-bus body is feasible.

Key words: pure electric buses, forward design of bus-body, transfer stiffness matrix method, stiffness- chain,  local strength, bus-body lightweight