欢迎访问《汽车安全与节能学报》,

JASE

• 汽车节能与环保 • 上一篇    下一篇

渐变孔隙率纤维载体微反应器的甲醇重整制氢性能

周 伟1, 2,俞 炜1,裴普成 2,柯育智1,刘阳旭1   

  1. (1. 厦门大学 机电工程系, 厦门361005,中国;2.  汽车安全与节能国家重点实验室,清华大学,北京100084 ,中国)
  • 收稿日期:2017-10-05 出版日期:2018-03-31 发布日期:2018-04-10
  • 作者简介:第一作者/ First author : 周伟(1982—),男( 汉),湖南,教授。E-mail: weizhou@xmu.edu.cn。 第二作者/ Second author : 俞炜(1993—),男( 汉),浙江,硕士研究生。E-mail: 19920161151432@stu.xmu.edu.cn。
  • 基金资助:

    汽车安全与节能国家重点实验室开放基金(KF16072) ;福建省杰出青年科学基金项目(2017J06015)。

Performances of a methanol reforming microreactor with gradient porosity fiber support for hydrogen production

ZHOU Wei 1,2, YU Wei 1, PEI Pucheng 2, KE Yuzhi 1, LIU Yangxu 1   

  1. (1. Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, China;2. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China)
  • Received:2017-10-05 Online:2018-03-31 Published:2018-04-10

摘要:

       甲醇重整制氢微反应器是一种实现高效氢燃料电池的在线供氢的有效方法。该文以切削加工的铜纤维为原材料,结合低温固相烧结技术,制造形成具有渐变孔隙率结构作为催化剂载体的新型多孔铜纤维烧结板(PCFSS),采用两层浸渍方法负载Cu/Zn/Al/Zr 四元体系催化剂。用扫描电镜(SEM)进行微观形貌分析。改变反应空速(GHSV) 和反应温度,对几种不同孔隙率结构的微反应器,测试分析了制氢性能。结果表明:相比于80%的均匀孔隙率多孔铜纤维烧结板,以进口端到出口端孔隙率为90%~70%的渐变PCFSS 为催化剂载体的微反应器,展现出95%的甲醇转化率和0.51 mol/h 的较好氢气摩尔流量,并具有较好反应稳定性能。

关键词: 制氢微反应器, 甲醇水蒸气重整, 多孔铜纤维烧结板, 催化剂载体, 渐变孔隙率

Abstract:

Methanol reforming microreactor for hydrogen production is one of the effective tools to realize online hydrogen supply for fuel cells. A porous copper fiber sintered sheet (PCFSS) with gradient porosity was fabricated using the cutting copper fiber by a low temperature solid-phase sintering technology. A two-layer
impregnation method was employed to load the Cu/Zn/Al/Zr catalysts on PCFSS. A surface morphology of PCFSS with different gradient porosities was discussed based on the scanning electronic microscope (SEM) observation. Some PCFSSs with different porosity structure were used as catalyst support in the microreactor for hydrogen production. Reaction performances were investigated by varying the reaction gas hourly space velocity (GHSV) and the temperature. The results show that the microreactor exhibits a better methanol conversion (95%) with the gradient PCFSS with a porosity of 90%~70% from the inlet to the outlet having a hydrogen molar flow rate of 0.51 mol/h and a better catalytic reaction stability compared with the PCFSS with an uniform porosity of 80%.

Key words: microreactor for hydrogen production, methanol steam reforming, porous copper fiber sintered sheet, catalyst support, gradient porosity