欢迎访问《汽车安全与节能学报》,

JASE ›› 2019, Vol. 10 ›› Issue (2): 161-168.DOI: 10.3969/j.issn.1674-8484.2019.02.003

• 汽车安全 • 上一篇    下一篇

基于分数阶PID 理论的汽车线控转向的主动控制

赵树恩,刘秋杨   

  1. (重庆交通大学 机电与车辆工程学院,重庆 400074,中国)
  • 收稿日期:2018-12-06 出版日期:2019-06-29 发布日期:2019-07-05
  • 作者简介:第一作者:赵树恩(1972—),男( 汉),陕西,教授。E-mail: zse0916@163.com。 第二作者:刘秋杨 (1993—),男( 汉)四川,硕士研究生。E-mail: liuqiuyang93@163.com。
  • 基金资助:

    国家重点研发计划项目(2016YFB0100905);重庆市基础研究与前沿探索项目(cstc2018jcyjAX0422)。

Active control of steering-by-wire of vehicle based on fractional-order PID theory

ZHAO Shuen, LIU Qiuyang   

  1. (School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China)
  • Received:2018-12-06 Online:2019-06-29 Published:2019-07-05

摘要:

        为实现更好的车辆稳定性,提出一种基于分数阶比例积分微分 (PID)理论的线控转向(SBW) 主动控制方法。建立了SBW系统Simulink动力学模型,设计了定横摆角速度增益的理想变传动比曲 线;基于横摆角速度反馈的状态跟踪校正控制策略,提出该算法;利用Oustaloup滤波器和粒子群优 化算法,进行了有理化和参数整定处理。在高速双移线和鱼钩工况下,进行了离线Carsim/Simulink 联合仿真分析。结果表明:相比于传统PID控制和模糊控制,该控制方法的横摆角速度降低了4.7% 和9%,侧向加速度降低了6.3% 和7.7%,质心侧偏角降低了9.8% 和19.5%;因而,该控制器具有 较好的SBW主动控制性能

关键词: 汽车行驶稳定性 , 主动控制 , 线控转向(SBW) , 变传动比 , 比例积分微分 (PID) , 分数阶 PID , 粒子群算法

Abstract:

 An active control method of steering-by-wire (SBW) was proposed based on a fractional-order proportional-integral-differential (PID) theory to have a better vehicle running stability. The authors stablished a Simulink dynamic model of the SBW system, and designed a control strategy of state-tracking-correction with yaw-rate-feedback using an ideal variable transmission ratio curve with constant yaw rate gain. Some rationalization and parameter tuning were processed out by using an Oustaloup filter and a particle swarm optimization algorithm. The automobile SBW with a fractional-order PID controller was analyzed by an off-line simulation using a Carsim/Simulink joint simulation under the conditions of high-speed double-shift line and the conditions of fish hook. The results show that the fractional order PID controller reduces the yaw angular velocity by 4.7% and 9%, reduces the lateral acceleration by 6.3% and 7.7%, and reduces the sideslip angle of center of mass by 9.8% and 19.5%, compared with the traditional PID control and with the fuzzy control. Therefore, the controller has better SBW active control performance.

Key words:  vehicle driving stability , active-control , steer-by-wire (SBW) , variable ratio ,  proportion integration differentiation (PID) ,  fractional-order PID , particle swarm optimization