欢迎访问《汽车安全与节能学报》,

汽车安全与节能学报 ›› 2023, Vol. 14 ›› Issue (2): 212-223.DOI: 10.3969/j.issn.1674-8484.2023.02.008

• 智能驾驶与智慧交通 • 上一篇    下一篇

基于NFTSMC的分布式驱动电动汽车稳定性控制

张一西1(), 赵轩2,3,*(), 马建2,3, 王兴路1, 胡月琦1   

  1. 1.西安航空学院 车辆工程学院,西安 710077,中国
    2.长安大学 汽车运输安全保障技术交通运输行业重点实验室,西安 710064,中国
    3.长安大学 汽车学院,西安 710064,中国
  • 收稿日期:2022-09-04 修回日期:2022-12-13 出版日期:2023-04-30 发布日期:2023-04-27
  • 通讯作者: 赵轩
  • 作者简介:*赵轩(1983—),男(汉),陕西,教授。E-mail:zhaoxuan@chd.edu.cn
    张一西(1993—),女(汉),陕西,讲师。E-mail:zyixixixi@163.com
  • 基金资助:
    汽车运输安全保障技术交通运输行业重点实验室(长安大学)开放基金资助项目(300102223507);西安航空学院校级科研基金项目(2021KY0207);陕西省自然科学基础研究计划项目(2023-JC-YB-483)

Stability control of distributed drive electric vehicles based on the nonsingular fast terminal sliding mode control (NFTSMC)

ZHANG Yixi1(), ZHAO Xuan2,3,*(), MA Jian2,3, WANG Xinglu1, HU Yueqi1   

  1. 1. School of Vehicle Engineering, Xi’an Aeronautical Institute, Xi’an 710077, China
    2. Key Laboratory of Transportation Industry of Automotive Transportation Safety Enhancement Technology, Chang’an University, Xi’an 710064, China
    3. School of Automobile, Chang’an University, Xi’an 710064, China
  • Received:2022-09-04 Revised:2022-12-13 Online:2023-04-30 Published:2023-04-27
  • Contact: ZHAO Xuan

摘要:

为提高分布式驱动电动汽车在极限行驶工况下的稳定性,提出了一种具有三层结构的直接横摆力矩控制策略。顶层控制器解析驾驶人期望行驶状态值;上层控制器采用非奇异快速终端滑模控制(NFTSMC),决策维持车辆稳定行驶所需附加横摆力矩;下层控制器以车辆稳定裕度最大为目标,以电机输出极限、路面附着极限、轮胎纵/侧向力耦合关系为约束,基于加权最小二乘法实现4轮力矩动态优化分配。基于MATLAB/Simulink和Carsim仿真平台开展仿真试验。结果表明:相比滑模控制,车速为70 km/h时,双移线和正弦迟滞工况下,质心侧偏角最大跟踪误差分别减小66.7%、45.8%,均方根误差分别减小64.8%、56.4%,可见该策略能够提高期望状态跟踪精确性,改善车辆在极限行驶工况下的稳定性。

关键词: 分布式驱动电动汽车, 直接横摆力矩控制, 非奇异快速终端滑模(NFTSMC), 转矩优化分配

Abstract:

A direct yaw moment control strategy with a three-layers structure was proposed to improve the stability of distributed drive electric vehicles for extreme conditions. The top controller was designed to resolve the desired driving state value of the driver. The additional yaw moment required of the vehicle was determined in the upper controller by utilizing the nonsingular fast terminal sliding mode control (NFTSMC). To maximize the vehicle stability margin, the low controller was designed to optimal assign torque to four wheels by using the weighted least square method, which synchronously considered the motor output capability, road adhesion limitation, and the coupling relationship between the longitudinal and lateral tire forces. The simulation experiments were carried out on the MATLAB/Simulink and Carsim platform. The results show that when the vehicle speed is 70 km/h, the maximum tracking error of side slip angle decreases by 66.7% and 45.8%, and the root mean square error decreases by 64.8% and 56.4%, respectively, compared with the sliding mode control, Which shows that this strategy can improve the expected state tracking accuracy and improve the stability of the vehicle in the extreme conditions.

Key words: distributed drive electric vehicle, direct yaw moment control, nonsingular fast terminal sliding mode control(NFTSMC), torque optimization distribution

中图分类号: